If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-20k+16=0
a = 1; b = -20; c = +16;
Δ = b2-4ac
Δ = -202-4·1·16
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{21}}{2*1}=\frac{20-4\sqrt{21}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{21}}{2*1}=\frac{20+4\sqrt{21}}{2} $
| 5(x+2=(x+10) | | -180=g-473 | | g+10=93 | | 7x+5x+2x^2=0 | | 77=14+t | | -12/8x=6/2 | | 9x-30=7x+5 | | 3-+4x=10x+10 | | 8^x=44*2^x | | 82=q+30 | | 3-(4x)=10x+10 | | n=14+11/2 | | 88+h=147 | | 3-(+4x)=10x+10 | | 28y-7=15 | | -2.5(1-2n)=1.5n | | -12x-108=-15x+48 | | e+18=85 | | x-3+111+210=360 | | 2x-128/x^2=0 | | 3/7x+x/5=8 | | 3x^2-24x=6=-2 | | 2(3)^x=3^x+9 | | 125/27=(3/5)^2x-1 | | s+11800=7710 | | q-952=-883 | | 3-2=-12-5y | | 5z+44=3z | | 3(4x+5)=2(x+5) | | -112-x=43+4x | | 3^(1-8x)=7x | | v(v^2-2v-16)+32=0 |